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Cellular responses to mechanical strain

Osteoclasts. Very little is known about osteoclastic

responses to mechanical stimuli, but mechanical

strain reduces osteoclast recruitment (Rubin et al.,

1999).

Osteoblasts. Mechanical stimulation of bone tissue

by physical activity stimulates bone formation in

normal bone and may attenuate bone loss in osteo-

porotic patients. Normal bone cells seem to increase

proliferation and TGF-b secretion in response to

mechanical strain, while osteoporotic cells do not

(Neidlinger-Wilke et al., 1995). Osteoblastic cells

from different locations in the skeleton react differ-

ently to mechanical strain in animal studies.

Osteocytes seem to be the primary mechanosensory

cells of bone, and the lacunocanalicular network

constitutes the structure that mediates mechanosen-

sing. Strain-derived flow of interstitial fluid through

this network seems to mechanically activate the

osteocytes, as well as ensuring transport of cell

signalling molecules and nutrients and waste pro-

ducts. This concept allows an explanation of local

bone gain and loss, as well as remodelling in

response to fatigue damage.

It has been shown that mechanical loading stimu-

lates the transformation of lining cells to osteoblasts

(Boppart et al., 1998; Pead et al., 1988).

Effects of mechanical strain on bone turnover

and bone remodelling

Bone remodelling is affected by mechanical strain.

The general trend is decreased bone degradation,

possibly caused by reduced osteoclast recruitment

(Etherington et al., 1999). The impact of physical

activity on bone turnover may, however, depend on

the kind of exercise performed (Layon, 1993; Zorbas

et al., 1994). There are inconsistencies in the effects

of physical exercise on biomarkers of bone turnover.

An increased bone resorption has been observed in

acute (Welsh et al., 1997) or chronic exercise (Jaffre

et al., 2001). On the contrary it has been demon-

strated that treadmill running had inhibited the

increase in urinary deoxypyridinoline excretion ob-

served in castrated rats (Horcajada et al., 1997).

Physical activity and bone mass in the young

There exist evidence from observational studies and

prospective randomised controlled trials, that sup-

port the notion that that exercise increase bone mass

in the young (Bradney et al., 1998; Haapasalo et al.,

1996; Heinonen et al., 1999; MacDougall et al.,

1992; Margulies et al., 1986; Morris et al., 1997;

Nilsson & Westlin, 1971; Sinaki et al., 1996).

Studies have reported that both girls and boys in a

high impact group on a moderate level gained

significantly more bone than controls over a 7�10

month period (Morris et al., 1997). In examining the

effect of loading activities in premenopausal women,

longitudinal studies often demonstrate rather small

increases in bone mass, 1�6% over an 8�24 month

period (Sinaki et al., 1996). In young males, it has

been shown that intensive exercise can accelerate

bone accretion to a very high extent in a short period

as 14 weeks, even if more than 40% of the subjects

discontinued the training program due to stress

fractures of the tibia (Margulies et al., 1986). In

children, activities characterized by impact have

been shown to be more osteogenic than non-impact
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loading activities (Courteix et al., 1998). The dura-

tion of the load seems is of minor importance, while

high strain, multidirections, impact-loaded, high

frequency training are of significant importance

(Lanyon & Rubin, 1984; Rubin & Lanyon, 1985,

1984a, b).

Peak bone mass and physical activity

Peak Bone Mass is defined as the amount of bone

tissue present at the end of the skeletal maturation.

Among the factors that play a major role to improve

the peak at adolescence, nutrition and physical

activities are those on which one can act. A lot of

studies give evidences that the best period to improve

the bone mass is during the pre- and peripubertal

years, a stage of growth when the skeleton is most

responsive to exercise. Exercise may enhance bone

formation in a synergistic action in the presence of

growth hormone or sex steroid (Bass, 2000).

Physical activity and bone mass in adults

Limited data are available on the effect of exercise on

bone in men, but the few studies show significant

increases in BMD compared to controls in short-

time and long-time studies (Michel et al., 1989;

William et al., 1984).

Quite a few prospective studies have investigated

physical training and BMD in pre- and post-

menopausal women. Most studies of pre-menopausal

women show some positive influence. It appears that

higher loads, such as those produced by greater

impact, lead to greater bone mass. The activities

through which these loads can be achieved need to be

identified. The data also suggest that it is important to

distinguish young adult women from older premeno-

pausal women, since bone may respond better to

increased mechanical loads in the earlier years.

Berard et al. performed a meta-analysis on the effect

of exercise on bone, based on the literature from 1966

to 1996, and found no significant BMD benefit of

training, but a trend. However, this study includes the

literature from the early years of the DXA-scanning

method. Studies from 1995 seem to show BMD

benefit to exercise. More specific methods for bone

mass and bone strength measurements in prospec-

tive, randomised studies at all ages are needed in

order to evaluate the possible positive effect of

training on BMD.

Physical activity and skeletal structure

There exist evidence that support the notion that

exercises during growth influences not only bone

mineral density (BMD) but also the skeletal struc-

ture. This is of clinical relevance as not only BMD

but also bone structure is of importance for skeletal

strength. The earliest studies that evaluated the

structural effects of exercise compared radiographs

of the arms in tennis players. After this dual energy

x-ray absorptiometry, computerised tomography

(CT) and magnetic resonance imaging (MRI) has

supported that exercise do influence the cortical

thickness, the skeletal size and the skeletal structure

with a magnitude that could be of biological

significance for fracture reduction (Haapasalo

et al., 1996; Huddleston et al., 1980; Jones et al.,

1977; Kannus et al., 1996). The response in the

skeletal structure seems to be related to pubertal

development, as pre- and peri- pubertal tennis

players produce a periosteal expansion (Bass et al.,

1999), while endocortical contraction (Bass et al.,

1999; Margulies et al., 1986) and trabecular thick-

ening (Ashizawa et al., 1999) is the dominant

response in post-pubertal athletes. The response to

loading seems also be site specific, as young tennis

players have an endocortical contraction distally at

the humerus and endocortical expansion proximally

(Bass et al., 1999). But, the surface specific answer is

also different in the proximal, mid-diaphyseal and

distal region as well as in the antero-posterior and

lateral medial direction (Bass et al., 1999; Bass et al.,

2002; Haapasalo et al., 2000). Furthermore, the

type of activity undertaken may also influence the

skeletal structural response.

Physical activity and the skeleton in a

long-term perspective

Exercise increase BMD during adolescence but what

happens when the activity level is reduced, as in most

individuals in the third decade of life? There exist

only cross-sectional studies that evaluate BMD in

former exercising individuals in a long-term per-

spective, after age 65 the period when the fragility

fractures exponentially rise. These studies consis-

tently infer that no benefits in BMD of a biological

significance remains in old former athletes (Karlsson

et al., 2000). It seems as if a training-induced

anabolic skeletal effect achieved during adolescence

has disappeared 4�5 decades after cessation of active

career (Bass et al., 1998; Duppe et al., 1996;

Karlsson et al., 1993; Karlsson et al., 1996; Karlsson

et al., 2000). There exist few prospective long-term

studies that support the notion, when reporting a

higher BMD loss in retired athletes compared to

both still active athletes and controls. In contrast,

there exist some reports that there could be some

residual benefits in bone structure found in old

former athletes (Kontulainen et al., 1999), benefits

that hypothetically could influence the risk to sustain

fragility fractures.

142 P. Schwarz et al.
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Physical activity and fractures

Several studies report that women with low physical

activity, now or previously, have an increased risk of

sustaining a hip fracture (Coupland et al., 1993;

Gregg et al., 1998). One study including close to

10 000 elderly women reported that the quintile of

women with the lowest activity has a 42% higher hip

fracture risk compared to the women in the high

quintile (Gregg et al., 1998). Moderate physical

activity was associated with a 30% reduction in hip

fracture risk compared to physically inactive women,

in a study including 8 600 middle-aged and elderly

women (Paganini-Hill et al., 1991). When, addi-

tionally, a dose�response relation seems to exist, that

is an increasing activity level confers a diminishing

risk to sustain a hip fracture, this strengthen the view

that physical activity does protect against hip frac-

tures. There are considerably fewer studies in

women, which investigate the association between

physical activity and the risk to sustain a vertebral

fracture or other fragility fractures. Several studies

support that physical activity is associated with

reduced vertebral fracture incidence, when reporting

that moderate physical activity is associated with

around 30% reduction in the number of vertebral

fractures in active compared to inactive women

(Gregg et al., 1998; Silman et al., 1997). It is more

difficult to draw conclusion as regards physical

activity and the fracture risk in men, as there exist

fewer studies, most following small cohorts during a

short follow-up period. However, the larger studies

that do exist support the notion that physical activity,

also in men, is associated with reduced risk to sustain

hip fractures (Joakimsen et al., 1998; Kujala et al.,

2000; Meyer et al., 1993; Paganini-Hill et al., 1991).

The conclusion as regards physical activity and

vertebral fractures and other fragility fractures in

men is even more unclear and there even exist

reports that infer that those men with the highest

activity level also have the highest prevalence of

vertebral fractures (Silman et al., 1997)

If individuals, formerly physically active but now

sedentary, have a reduced fracture risk is debated,

former athletes seems to have a lower fracture risk

compared to controls, 9% compared to 12% and the

proportion of individuals with fragility fractures are

only half than among the controls, 2% compared to

4% (Karlsson et al., 2002). The reason for the lower

fracture risk is unclear, but both exercise-reduced

residual benefits in bone structure and neuro-mus-

cular function as well as a genetic selection bias

among the athletes may explain the results. Whether

former activity on a low level reduces the fracture

incidence in old ages is unclear.
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